You can actually buy a shirt with the Calkin-Wilf tree on it. I probably should buy it, if only so I can wear it when I inevitably give a talk on this subject again, either as a stand-alone talk (I've done it twice) or when I teach it in a class.
This is an infinite binary tree of rational numbers. It has 1/1 at the root, and the children of r/s are r/(r+s) and (r+s)/s. It turns out that this tree contains every positive rational number exactly once, giving an explicit enumeration of the rational numbers.
Also -- and this is what's really surprising to me -- let f(n) be the number of ways to write n as a sum of powers of 2, where no power of 2 can be used more than twice. Then (f(0), f(1), f(2), ...) = (1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,...). The sequence of numbers f(n)/f(n+1) are the rational numbers in that tree, in the order which they appear if you traverse each level from left to right.
I learned about the shirt from this mathoverflow thread, where Richard Stanley gives the theorem of the previous paragraph as an example of a theorem with an "unexpected conclusion".
See the original paper by Calkin and Wilf. I've mentioned it before here and here. I think I first heard of this paper from Brent Yorgey's series of posts expanding upon the paper, or perhaps from Mark Dominus' blog. (Somewhat coincidentally, Yorgey and Dominus both live in Philadelphia. I claim this is coincidence, even though Wilf is at Penn, because I don't think either of them heard about the paper from Wilf.)
And can anything nice be said about the number of ways to write n as a sum of powers of 3, where no power of 3 can be used more than three times?
Showing posts with label Calkin-Wilf tree. Show all posts
Showing posts with label Calkin-Wilf tree. Show all posts
14 March 2010
09 June 2009
When do you learn that the rationals are countable, and the reals aren't?
I'm currently teaching a course "Ideas in Mathematics" in our summer session. This is a course generally taken by students not in technical fields; quickly speaking, my syllabus is some basic number theory, different notions of infinity, some bits of geometry (polyhedra, letting them know that there is such a thing as non-Euclidean geometry, etc.), fractals and chaos, and a smattering of probability. This is a course that's not a prerequisite for anything and the students aren't going into fields where they'll need math, so I, like a lot of other people teaching this class, take the approach of showing them that "math is beautiful" rather than that "math is useful".
So today I'm showing my students that the rationals are countable, first by the standard proof and then by the superior Calkin-Wilf proof. I find the Calkin-Wilf proof aesthetically superior because the "standard" proof, in my opinion, is "really" a proof that the set of pairs of natural numbers is countable; we then just cross off the pairs which aren't in lowest terms as a sort of afterthought. As a result, it's difficult to answer questions like "what's the 1000th rational number in the `standard' enumeration?". Then I will show them that the reals are uncountable, using Cantor's diagonalization argument.
While preparing today's class, I realized that I don't know when I learned that the rationals are countable and the reals are uncountable. Is this even part of the "standard" curriculum for math majors? These feel like facts that I have always known; presumably I picked them up from some popular mathematics book at an early age. Do any of you remember when you learned this?
So today I'm showing my students that the rationals are countable, first by the standard proof and then by the superior Calkin-Wilf proof. I find the Calkin-Wilf proof aesthetically superior because the "standard" proof, in my opinion, is "really" a proof that the set of pairs of natural numbers is countable; we then just cross off the pairs which aren't in lowest terms as a sort of afterthought. As a result, it's difficult to answer questions like "what's the 1000th rational number in the `standard' enumeration?". Then I will show them that the reals are uncountable, using Cantor's diagonalization argument.
While preparing today's class, I realized that I don't know when I learned that the rationals are countable and the reals are uncountable. Is this even part of the "standard" curriculum for math majors? These feel like facts that I have always known; presumably I picked them up from some popular mathematics book at an early age. Do any of you remember when you learned this?
Subscribe to:
Posts (Atom)